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Abstract—A new finite element method is developed to analyse non-conservative structures with
more than one parameter behaving in a stochastic manner. As a generalization, this paper treats
the subsequent non-self-adjoint random eigenvalue problem that arises when the material property
values of the non-conservative structural system have stochastic fluctuations resulting from manu-
facturing and measurement errors. The free vibration problems of stochastic Beck’s column and
stochastic Leipholz column whose Young’s modulus and mass density are distributed stochastically
are considered. The stochastic finite element method that is developed, is implemented to arrive at
a random non-self-adjoint algebraic eigenvalue problem. The stochastic characteristics of eigen-
solutions are derived in terms of the stochastic material property variations. Numerical examples
are given. It is demonstrated that, through this formulation, the finite element discretization need
not be dependent on the characteristics of stochastic processes of the fluctuations in material
property value.

1. INTRODUCTION

With the advancement of space mechanics and rocket propulsion systems, the study of the
stability behavior of launch systems has gained much importance and dynamic analysis is
being used to investigate their stability (Bolotin, 1964). In such structures, several uncer-
tainties in structural parameters like length, moment of inertia, cross-sectional area, material
parameters like elastic modulus, mass density, etc., and the loading parameters, are always
present and unavoidable. A detailed investigation is necessary to assign the probability
limits of various characteristics, such as amplitude excursions, peak and envelope statistics,
etc., of the eigenvalues of the structural system. The usage of modern engineering materials,
which are characterized by their inherent uncertainties, does necessitate such an analysis to
ascertain reliable design and performance.

Literature surveys indicate that structural systems subjected to non-conservative load-
ing in which the loading and system parameters are independent stochastic fields are not
investigated so far. Only the type of systems such as columns subjected to random loadings
and having random material properties, resulting in a conservative system were analysed
by a number of authors (Collins and Thomson, 1969 ; Shinozuka and Astill, 1972 ; Hoshiya
and Shah, 1971 ; Augusti et al., 1981), using Euler’s criterion, i.e. statical method. At the
same time, Ariaratnam (1967) considered the stability of a deterministic column subjected
to a random loading in time.

The stochastic finite element method in the field of structural analysis where finite
element approaches are used in a probabilistic setting has received extensive attention
recently with different methodologies (Contreras, 1980 ; Liu et al., 1986, 1988 ; Yamazaki
et al., 1985 ; Shinozuka and Deodatis, 1988 ; Vanmarcke and Grigoriu, 1983 ; Spanos and
Ghanem, 1989). An excellent review of the research efforts in stochastic finite elements is
given by Benaroya and Rehak (1988). As can be seen from this review article, the stochastic
finite element methods fall into two major categories: (i) methods for response moment
calculations, and (ii) methods for reliability calculations. This is so because, if the random
fields are employed, the formulation leading to reliability evaluation needs to be entirely
different from that of the response moment calculations. If random variables are employed
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as in the works of Liaw and Yang (1991), the methods leading to the evaluation of response
moments can also be modified to evaluate the reliability. Nakagiri er al. (1987) used a
version of the stochastic finite element method to investigate the eigenvalue problem of
laminated composite plates considering stochastic variation of stiffness. In all the works
published so far, the system parameters are described either directly as random variables
or as stochastic fields converted to equivalent random variables defined at the centroid of
the finite element. The shortcomings of such a description are immediately obvious ; to cite
just a few:

(a) the use of only the mean and variance in the description of a random variable is
inadequate to describe a stochastic field for which a unique autocorrelation function or
scale of fluctuation is aiso necessary ;

(b) the size of the finite element becomes a function of the stochastic property of the
field rather than being governed by the usual considerations of the deterministic FEM ;

(c) finite element discretization when multiple stochastic fields are to be represented
cannot be considered as appropriate ;

(d) the perturbation method employed in all the above publications leads to com-
plicated recursive equations and can be avoided.

Even the recent work by Liaw and Yang (1991), in which the non-conservative loading
case is also addressed, has the above stated shortcomings. The present authors have pro-
posed and used a new version of the stochastic finite element method which is free from all
the above shortcomings for both self-adjoint and non-self-adjoint problems (Ramu and
Ganesan, 1991, 1992a,b; Sankar et al., 1992a) and also for singularity problems (Sankar
et al., 1992b). Here, the past investigations by the present authors have been extended and
used for solving the free vibration problem of non-self-adjoint type which arises when the
material property such as Young’s modulus, mass density of the non-conservative systems
are random processes in space. In other woids, Beck’s column and Leipholz’s column whose
Young’s modulus and mass per unit length have a stochastic variation are investigated. The
stochastic variation of Young’s modulus and mass per unit length are considered to be
spatially distributed one-dimensional, univariate stochastic fields.

2. DESCRIPTION OF THE PROBLEM

Consider a free-free column as shown in Fig. 1 which is subjected to two end loads P
at x = 0 inclined at an angle of a,¢, to the undeformed axis of the column, where ¢, is the
angle between the tangent to the deformed axis of the column and the undeformed axis of
the column at x = 0 and (P+ Q) at x = /, inclined at an angle of «, ¢, where ¢, is the angle
between the tangent to the deformed axis and the undeformed axis of the column at x = /.

i%lement

Fig. 1. Column under general non-conservative tdading.



Non-conservatively loaded stochastic columns 2409

Also, a distributed follower load of uniform intensity p/unit length inclined at the angle
ap@ with respect to the undeformed axis of the column is considered, where ¢ is the angle
made by the tangent to the deformed axis at any arbitrary point with the undeformed axis
of the column. Here x is measured from the end from which the distributed load is directed
towards and a,, o, and op define the degrees of the non-conservativeness of the respective
forces. The loading configuration represented is analogous to force distributions arising in
non-conservative problems discussed by earlier investigators.

3. STOCHASTIC CHARACTERIZATION OF THE SYSTEM PARAMETERS

The Young’s modulus and mass density are distributed randomly, along the un-
deformed axis of the column. The fluctuations over their mean values are assumed to
constitute independent one-dimensional, univariate, homogeneous, real, spatial stochastic
fields. The Young’s modulus and mass density can thus be expressed by

E(x) = E[1+a(x)], M

m(x) = m[1+b(x)], 2

where E and i are the mean values of the Young’s modulus and mass density respectively.
a(x) and b(x) are independent, one-dimensional, univariate, homogeneous, real, spatial
stochastic fields. The processes are characterized by their respective autocorrelation func-
tions R, and Ry, (or by their equivalent power spectral density functions S,, and S;;)
and scale of fluctuations ®; and ®,,. The variances are ¢ and g2, respectively. The
autocorrelation functions are, by definition, given by

R(§) = {a(x)* a(x+&)) 3
Ry (§) = <b(x) " b(x+8)>. 4

4. GENERAL CONSISTENT FINITE ELEMENT FORMULATION

Since ¢, ¢, and ¢ are small, the cosines of these angles may be taken to approach
unity. Therefore, for equilibrium with respect to forces parallel to the undeformed axis of
the column one gets Q = pl.

The column is now discretized into rn elements. Let the ith element be considered. The
nodal degrees of freedom are taken to be wi, ®}, wh, and @}, for the ith element. w}, w}
are the transverse deflections of the two ends of the element and @' and @), are the rotations
of the tangents to the deformed axis of the element with respect to the undeformed axis.
The transverse displacement w(x, f) at any arbitrary point of this element is given by

w(x, 1) = N'q’, 5)
where

N = {Nl NstNA}i,
q}. = {WI’G)I:WZ,@z}i-

N' is a row vector of interpolation polynomials (cubic Hermitian polynomials) which are
the same as that of a corresponding deterministic structure. The components of ¢ are
functions of ¢, the time variable.

If T’ represents the kinetic energy stored in the ith element, then
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. owY
Th=_ A=) dx
2J;m(x)A,<at> dx

(8 . . .
= iq! [ f NP m(1+b(x)) 4N’ dx] q:
0
= ig!' Mg, (6)

where M' = M4+ M ’((_2_)_, and the differentiation w.r.t. time is indicated by the subscript ¢.
The elements of M’ are given by

II
my; = J MAN,N; dx @)

0

and

/

m(Q) = mA L b(x)N, N, dx,
ml:/' = mij + mij (Q) (8)

If U’ represents the strain energy stored in the ith element, then
S L ?wY
U=-|E i
3 L (1+a(x)I; <5x2> dx

1; .o )
= g} I:j N7 E(1+a(x))[;N" dx] q;

0

— 1Ky ©

Here primes indicate differentiation w.r.t. x and

II
K = J N""E(1+a(x))I,N" dx
0
=K'+ K'(Q).

The coefficients of the stiffness matrix are thus given by

[l
ki = f N/E(1+a(x))[,N/ dx

0

A Y
= EI,‘[ N/ N/ dx+ EI, J (a(x))N/ N/ dx
0

0

= kyj+ky(€). (10

Because of the presence of the axial component of the distributed follower load, the
ith element is subjected to a uniformly varying axial compression increasing from F, to F}
(refer to Fig. 1). The axial compression at any arbitrary section of the element is given by
(Fi+px) = Fi+(Q/Dx, where x is measured to be positive in the increasing direction of
the axial compression, i.e. from end 1 to end 2. Therefore, the work done by the axial
compression in the element W is given by
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A I ow¥
We=35 L (F+0x/D) (5;) dx
A . 1, T ) )
=1F 4" [J NN dx]q"+%Qq" [J N (L/DN" dx] q'
] 0
= {Fiq" Kocq' +104" kind', 1)
where
'{i
kic = j NN dx (12)
0
and
o »
kgp = J N (L L/hN" dx, (13)
0

where L, and L, are the natural coordinates.

ki (which is actually the geometric stiffness matrix used in the stability analysis when
the compressive force is constant) and k5p (which is the geometric stiffness matrix which
accounts for the linearly varying compression force starting from a value zero at one end)
are deterministic coefficients.

It may be noted that the first term in the above expression gives the work done by the
constant part of the compression F; for the element, whereas the second term is due to the
work done by the uniformly varying compression increasing from 0 to (F;— F}) as shown
in Fig 1.

The lateral components of the follower forces are dependent on the slopes of the
tangents to the deformed axis of the column at the points of application of these forces and
hence there is no unique scalar work function corresponding to these forces. Therefore, the
virtual work done by these forces is appended as an external term in the usual form of
Hamilton’s principle.

The virtual work done by the non-conservative components of the forces is worked
out considering the virtual displacements to be the variations of the actual displacements.

The virtual work Wiy done by the distributed follower force in the element i, is
given by

’ N aw
- J psin {ap P)dw dx = f pop 0w dx
o Ox

0
ll
papdq” [ J NN dx] q'
o

= [apQ/Nl6q’ kamcqia (14)

o W:.)NC

i

where
N ’l
ki)NC = J. N{rN’i dx
0

and subscript DNC represents the distributed non-conservative loading of the column.
The virtual work done by the concentrated follower force at the ends may be taken
together as d Wenc given by
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0Wene = —Psin (a9 Po)oWo— (P+ Q) sin (2, ¢ )ow,

ow 0
= Py, (5}})0 Swo— (P+Q)a, (5) w,
1

ow

0
= Paydw, (5;)0 —(P+Q)a,dw, (bl:). . (15)

Here subscript CNC represents the non-conservative loadings at the ends x = 0 and x = /
of the column.
Now, the total kinetic energy of the entire structure is

T=)T= (Z éq,"rM"q{)
=1 i=1

n

= Y g (M'+ M'(Q))q.. (16)

i=1

The total strain energy is given by

U=

Ui — (Z ElqiTKiqi>
1 i=1

M=

i

n

1g" (R +K'(Q)q'. (1mn

1

M=

i

n

Total work done by the conservative part of the forces, W, is given by

W, =

i

1 M:
X

iFiq" Kicq' + Y. 30q" Kisng'. (18)
=1

1 i=

-

It

i

The total virtual work done by the non-conservative components of the forces can now be
defined in the form,

oWne = Z 0Wone+0Wene
=1

aw

n T . ow
= " Kpneq' — 0 =— . 19
i; {(O‘DQ/I)‘SQ Kpneq }-}-Paoé W, (ax>0 (P+Q)a, oW, (5x>1 19
The classical Hamilton’s principle,
6J Ldr=0 (20)
if modified for non-conservative systems becomes

le-[é(T— U+ W,)+6Wnc] di = 0. @1

Substituting for T, U, W, and 6 W, this becomes
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r 5 [2 %q:'T(M"+M"(n))qf] di— f K [

1 i=1 1

X

Y i (R +KQ)g + ¥ Filg" Kicq'
i=1

i=1

n T ) 1y n T ) 6w
+ Y 04’ Kbnq'] de+ J [Z (apQ/Ddq" Kpncq'+ Paod W, (a)o
i=1 A

i 1 i=1

+(P+ Q)a,aw,(g—’:)] dt=0. (22)

The summations are carried out in the sense of finite element assemblage, taking the
global displacement vector to be ¢. In addition, w, is taken as g, (0w/0x)¢ as g2, W| @S @2n4 1
and (dw/0x), as ¢, »- Now, if contemporaneous variations of ¢ are taken, while integrating
the first term by parts, the 6 Wy is given as follows:

Wne = f [—6q" Mg, — 89" Kq+ 69" PKicq+ (89" QKcq+ 09" QKopq)
4
+6¢" (apQ/DKpncq+ 69 2o PKencig— ¢ o PKenead — 4701 QKencagl dt = 0. (23)
F} in eqn (18) is put in the form:

F\ = P+, 24)

where B < 1.0 corresponds to the fraction of the total distributed load acting at the trailing
node of the element i and

K& = B'Kac. (25)

Matrices Kcne) and Kenc; contain non-zero elements only in one location each, namely
(1,2) and (2n+1,2n+2); and therefore, these matrices need not be assembled but the
corresponding terms in K and K& may be modified by the appropriate addition of the
non-zero terms in Keney and Kenes, after multiplying them by the respective factors shown
in eqn (23).

Substituting ¢ = §* e* in eqn (23) and considering the arbitrariness of the variation of
q gives

{=s*(M+M(Q)) + (—K—K(Q)) + P(Kgc + 2o Kener — %1 Kenea + Q(Kéc + Kop)
+apKpnec — %1 Kene2) }4* € =0,  (26)

ie.
{—s*(M+M(Q))+(— K- K(Q))+ PK& + QK%,} §* = 0, 27
where

K& = Kgc+aoKener — 21 Keneas
K& = K&+ Kop +apKpne — o Kenea -

5. PARTICULAR CASES

5.1. Beck’s column

This is the case of a cantilever column with a concentrated follower force P at the free
end, giving
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Q = 0 and «; = 0, leading to
[—s2(M+M(Q))+(— K—K(Q))+ PK&:}G* ' = 0. (28)
The geometric boundary conditions are imposed by making the corresponding rows and
columns in the respective global matrices zero or by simply removing those rows and
columns from the global matrices to get reduced matrices for the restrained structure. The

latter method will reduce the number of operations for calculating the covariance matrix.
The eigenvalue problem is given by the equation

—(K+ K(Q) — P(Kgc + oo Kenei )G* = 57 (M + M(Q)). (29)

This eigenvalue problem is solved for the eigenvalues s for particular values of the par-
ameter a, as the value of P is varied.

The onset of instability by divergence or by flutter is indicated by the appearance of
s? values which are real, positive and complex, respectively, and the corresponding load P
is the critical load at divergence or flutter, as the case may be. 2y =1 is the classical
Beck’s column. The calculation of the eigenvalue statistics will give the required statistical
information about Beck’s flutter load.

5.2. Leipholz column
This is a cantilever column with the follower force uniformly distributed along its
length. Here,

P =9

Contributions from Kene, and Kener are taken to be equal to zero. The resulting
equation is

{~ (M +M(Q) — (K+ K()) + Q(K&c + apKpnc) }4* € = 0. (30)
For a fully tangential distributed load the non-conservative parameter,
ap = 1.0.
Now, the geometric boundary conditions are imposed and the reduced matrices are

obtained for the constrained structure which also results in the reduction of covariance
matrix size and a reduced amount of summation.

6. STOCHASTIC CHARACTERIZATION OF THE INFLUENCE COEFFICIENTS

Let the stiffness coefficient k;; now be considered. The mean and variance values of &;;
are derived as follows. The mean value is given by the following averaging procedure :

ky = Ckyy = Cky+kiy () 31
- <EI j TN/ (x) - NS () dx> + <z~;"1 j “a()N"(x)* N/ (x) dx> (32)
0 0

L, /,
= EIJ‘ N/ (x)* N/(x)dx+ Elf <a(x)>N{(x)* N/ (x) dx

_E J NG NP dx = £, (33)

0

as {a(x)y = 0.
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Similarly,

Variance (k;;) = var (k;;)
= Var (k; +k;(Q)) = var (k;(Q)) (34)

€ Ie
= <E’I j l a(x)N/(x)* N/ (x) dx* EI ‘[ a(x)N/(x)* N;"(x) dx>

0

L (L
=E212£ J;<a(€1)'a(éz)>'Ni”(él)'M"(-fn)'N:"(éz)'N,-”(fz)déldfz

(335)

e Ie
=E"212£ LRaa(él—fz)‘Nf”(il)'l\/j"(én)'Ni"(éz)'N,-”(éz) d¢, dé,. (36)

The mass coefficient m;; is given by

le
my; = J‘ Am(x)* Ni(x)* N;(x) dx 37
0
A !
= n‘*tAf Ni(x)* N;(x) dx+n'1Aj b(x) * Ni(x) * N;(x) dx (38)
0 0

Similar analysis for mean and variance of mass coefficients will show that

Mean Ofm,-j = tﬁ,,

Var (m;;) = Var (m;(Q))

L (L
=rﬁ2A2L J;Rbb(«fl—éz)N,-(in)'Nj(én)‘N.-(Cz)'N;(éz)dfndéz- (40)

As can be seen, the evaluation of the variances using the above expressions will be
tedious. Also, the full correlation function expression is needed for the evaluation. Such
adequate information is seldom available and the experimental data seldom allow one to
distinguish among competing analytical models for the correlation function. So, a simplified
treatment is now proposed. The stochastic processes a(x), b(x) are assumed to be char-
acterized by three parameters in each case: the means, which are zero, the standard
deviations 65, 0, and the scale of fluctuations @g, ®,,. The second order properties are
covered by either the autocorrelation function or power spectral densities or by the variance
functions (Vanmarcke and Grigoriu, 1983). So, the fluctuating parts of stiffness and mass
elements are evaluated using the local averages over elements of material property fluc-
tuations. For the ith finite element, the local averages are

1 [ 1%
5= f awdx; m=1 J' bx) dx, @41
i i JO

where /; = length of the ith element.
The properties of local averages are then:



2416 R. GANESAN et al.

<E,~>:<,lfa(x>dx J<a(v>> dx =0

)

{m;y = < f b(x) dx> = [ {b(x))> dx = (42)

The variances of local averages are

1 (" K
Var(E,-)=<lLa(x) dX'l*j a(x) dX> J f a(&1)ra($z)) dEy dSy,  (43)

i

1 (7 1 [ 1 (%[
Var (m;) = <1 L bx) dx- L b(x) dX> = fo L <b(E1)-b(Sr)) dEy dE,. (44)

i

Since {a(&1) *a(&2)) = R.(&—&5) and <(B(&)) b(&,)) = Ry (&, —¢&,), the above equations
can be written as

l 1 1
Var (E;) = 2 L L R.(&1—¢) dE, dE, (45)
and

1 (A
Var (m;) = I ,[) J; Ry, (&, —&5) dE, dés. (46)

In terms of variance functions, which characterize the dependence of variance of local
average on the size of the element, the above variance expressions can be written as,

O
Var (E;) = aé?ﬁ(li) = o "'[‘E'§ ;> Op, Oy (47)
and
2 2 ®m
Var (m;) = o, ym(l}) = 05" / 3 [i»> Of, By, (48)

where yg(/}), ym(l;) are the variance functions of spatial averages of £ and m respectively
and ©g, O, are the scales of fluctuation of E and m, respectively. The covariance functions
of stiffness coefficients can now be calculated for any two coefficients k,(Q) and £,,(€),
where i, j and r, s are the nodal point indices for those two elements through the use of
spatial averages and are given by

o} l; « O,
V Ei - @
ar (£)) o} lE I >» 0O (49)
and
ol I « O,
v i) = ®m
ar (m;) o2 On I >0, (50)

The cross covariances between stiffness and mass fluctuation components are zero as the
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two stochastic processes a(x), b(x) which describe the fluctuations around the mean values
need not be dependent. Alternatively, the independence between the two is implied here.
The covariance functions of stiffness coefficients are calculated for any two coefficients
k;(Q) and k,(Q) of the overall system matrices :

!

(@) k(@) = <E1 J " AN ) N7 () dx Elf “a(IN; (%) N/ (x) dx> , 51
0

0

where /, and [, are the lengths of two elements, i.e. distances between nodes i and j and
nodes r and s,

1,
<kij(g) k() = E*r <J; J:) a(&)a(E)N (&) 'Ivj”(£2)N:'(€l) *NJ (&) dé, dfz> .
(52)

The above equation is approximated using the spatial averages as,

L
{E"ZIZL LN,-”(é‘l)‘M"(fz)Nr”(fx)'Ns”(éz) déudéz}‘<En(ij)'Ez(rS)>, (53)

which for equal sized finite elements becomes

! !
{Ezlz L N{(x)N;'(x) dx* L N/ (x)N/"(x) dx} *CEL() * Eq(rs)). (54)

Using the variance functions given earlier, this takes the form

!

{EZIZJ N/ (x)N/(x) dx'f

0 0

NN, (%) dx}

O.2
* [L8ye(Lo) — Live() + Liya(Lo) — Lins(L3)],  (55)

where the lengths Ly, L,, L,, L are indicated in Fig. 2.
In terms of correlation functions, the above equation is written for L, = U,, in the
following manner :

]

(@) k(@) = {El f NI GON () dx- f

0 0

(}

N ON ) dx}

0’22 Uy U, v, U,

?[Uﬁf J Pa(fl—fz)dfldéz—U%J J pa(&1—¢&5) dE, dE,
0 Jo 0 Jo

U, U, U, Uy
+U%J(; J; Pa(él_fz)d‘fldfz—Ugj; J; pa(él_f2)déld£2jl' (56)

L o
" L3

Li 2| Lo Ty 2
0

L

-

Fig. 2. Correlation between the coefficients corresponding to two arbitrarily located finite elements
iandj.
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Sirr}ilar expressions can be written for (m(Q) - m,,(Q)), for stiffness and mass elements
which correspond to a node shared by two elements, as one can see from the above, the
variances and covariances automatically take care of the superposition law.

7. EIGENSOLUTION STATISTICS

The eigenvalue problem is written as

[K*{x} = AM]{x}, (57)
(K + K Q) {x} = AM+ MQ)]{x}, (58)
where
[K) = —[K]+ P[Koc +o[Kenci]] for Beck’s column (59)
and
[K*] = —[K]+ QK& +an[Konc]] for Leipholz column. (60)
Moreover,
[K*) = —[R]+ P[Kcc +%[Kenei]l (61)
and
K°'(Q) = —[K(Q)], for Beck’s column (62)
and
[K'] = —[K]+Q[K&c +on[Kpnc]] (63)
and
K*'(Q) = —[K(€)] for Leipholz column. (64)

K™, M are the deterministic matrices and K*°'(Q), M(Q) are the random matrices
which arise from the fluctuation processes a(x), b(x), respectively. Since the material
property distributions are interpreted to be one-dimensional univariate stochastic fields, the
random components of stiffness and mass matrices result from local (spatial) averaged
quantities. Now, consider a random eigenvalue problem described by

(K*){x} = A[M]{x}, (65)

where elements of K**', M are random variables.
The perturbations of the eigenvalues 4, can be shown to be

n n aﬂ‘

G- ¥ % ke Y %o

r=1 s=1 r=1s=1

L dm,, (66)

where 7 is the order of matrices [K**'] and [M].
Since the K™ and M elements are regular functions of the influence coefficients, if one
seeks the derivatives of each eigenvalue about the averaged eigenvalue, one can get,
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04;

pry = y,X:/yi Mx;,

(67)
a‘iﬁ; = — A(ynxaly] Mx;). (68)
In the above, y; is the left eigenvector and x; is the right eigenvector, so that
((K*T—A[MD{x} =0 (69)
and
{7 37K - 4[M]) = 0. (70)

If the elements of random matrices result from continuous stochastic processes describ-
ing material property fluctuations, for sufficiently small perturbations, one can write

= Z:.: ; ktot (kl‘jot Ell.;“ =Z =Z (mxj lj)

-1+% % akm, @)+ T T S (@) )

Therefore, the mean values are

@r=dr+ ¥ % 6k‘°‘ SCCOEDN

. om, m (). (72)
As <k (Q)) = <my(Q)> =0

> =1,

(73)
The covariance between any two eigenvalues is given by

=562 = ({5 § Zrara+ 5 5 2o}

i=1 j=1

- ‘ a;{‘ tot q
' {Z. L s @)+ ,Z, SZI am, " 'S(Q))}>
L e v o 04,
=Y X2 X

: ] : aktot aktot <ktot(Q)ktot(Q)>
i=1j=1r=1s= rs

i

n n n n

04, 04,

v A(Q)m,(Q), 24
i=lj=l"=]s=|am,j r< ]( ) ( )> ( )
Slnce COnvarlance (k'ot(n)mrs(n)) -0

The variance is therefore given by

+

n n n

d=var)=% ¥ ¥ 3 2 o

i=lj=1r=1s=1 ktOt le <kttjm(g)krtgt(g)>

n n

L o 04, 04
+ ; =Zl ; ; mp {my(Qm,(Q)>. (75)
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Since the stiffness and mass matrices are derived using stochastic finite element method
consisting of a deterministic component and zero mean fluctuating components, the mean
value of any random stiffness or mass matrix element is given by the corresponding
components of the deterministic parts of those random matrices. Therefore,

1o
Bt = f N/ (x)* N(x) dx+ PlkSC +aokNC"], for Beck’s column (76)
and
(A
ket = J. N/(x)* N/'(x) dx+ QlkJC" +apkNC], for Leipholz column  (77)
and
[C
1y = 1 f AN(x)N(x) dx. (78)
(]

Since Var (k") = Var (k,(Q)), the covariance between two stiffness elements is given by
eqn (53) and an identical expression can be written between two mass matrix elements.
Hence, the covariance matrix between stiffiness and mass elements can be found. That is,

[ Var (k) COV (k,ky) ... COV(m,k) ... COV(myk,) |
COV (ki ks) oo e e
[Cm] =1 oo s e e
COV (m,k,) COV(m,ky) ... VAR(m) ... COV(m,y,m)
| COV (m,, k) COV (m,5,ky) ... COV(m,,my) ... VAR (m,)

¢, C
_ [ 1" 12], where n2 represents n°.  (79)
Cg; sz

In the above matrix, the submatrices C,,, C,; become null matrices as the two material
property variations are independent stochastic fields. From this, the covariance between
two ki7" elements is calculated.

As a result, the mean values of eigenvalues become the eigenvalues obtained by solving
the unperturbed eigenvalue problem,

[I?mt] {jz} = Zz[M] {)Ei}’ (80)

where [K**], [M] are formed using the deterministic components of k;>* and m,;.
Then the variances of the eigenvalues are given by

Lo 04, 04,
2evar() =Y T T T jk 55 COV (5 K@)

=l j=1lr=1s=1

s n r 5,{ 619 COV(m;,(Q)m’S(Q)) (81)

(aé

and the covariance between any two eigenvalues is given by
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P

x=1
TS

Fig. 3. Beck’s column—example.

a4, 9,
e ket

oV, i)=3 3 T 3 COV (k5 @)k (@)

=1j=1r=1rs5=1

+3 3 1 T 5 e COVim@m@). )

lsl

Similar expressions can be written to evaluate the covariance of eigenvector elements.
The covariance matrix of the eigenvalues and eigenvectors can then be constructed. Depend-
ing on the boundary conditions of the structure being analysed corresponding rows and
columns can be removed from the [K'*], [M] matrices and the same thing can be done with
the covariance matrix between the stiffness elements and mass elements. Summations are
accordingly reduced in terms of indices, i.e. n corresponds to the unrestrained global degree
of freedom of the total structure being analysed.

At this point, it may be of interest to compare the above procedure with that adopted
by Liaw and Yang (1991) in a similar study. As mentioned earlier the above-referenced
work deals only with random variables and not random fields as considered in the present
paper. Further, the perturbation series is of the form

A=204 Z%l)“r‘f""

r=1

where o, are the random variables and the expectation E[x, o] is assumed to be explicitly
known as input information. As has been already pointed out, the use of random variables
together with a perturbation series in the above form makes a reliability evaluation possible
by a straightforward extension of the procedure for response moment evaluation. For the
evaluation of second or higher order statistics of eigenvalues and eigenvectors using second
order analysis, availability of higher order moments of input random variable is a require-
ment. While such information may not be available for non-Gaussian cases, its calculation
for Gaussian cases is very tedious or in most cases impossible as outlined by Shinozuka
and Yamazaki (1988). The superiority of the method developed in the present paper, in
this respect, in as much as it employs a random field representation and sensitivity vectors
leading directly to the covariance matrix of output quantities is worthy of special mention.

8. NUMERICAL EXAMPLE

The Beck’s column as shown in Fig. 3 is taken as an example. The Young’s modulus
is considered to be stochastically distributed. The material property values are taken as:

E=21x10°Nmm~2 and m=7.83x10"° Nsecmm *,

and further the length = 7.35 m; cross-sectional area = 4329 mm?; moment of inertia =

SAS 30:17-d
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Table 1. Variances of vibration frequencies of Beck’s column with uncorrelated E values for P/P, = 0.25

Input variance var 4, var 4, var 4 var A, var As var A,
0.01 23.5708 0.4218 0.0772 4.0229 100.3446 24.7048
0.02 47.1417 0.8436 0.1545 8.0457 200.6892 49.4097
0.03 70.7125 1.2654 0.2317 12.0686 301.0337 74.1145
0.04 94.2833 1.6872 0.3089 16.0914 401.3783 98.8195
0.05 117.8541 2.1090 0.3862 20.1143 501.7229 123.5242
0.06 141.4250 2.5308 0.4634 24.1372 602.0675 148.2291
0.07 164.9958 2.9526 0.5406 28.1600 702.4210 172.9340
0.08 188.5666 3.3744 0.6179 32.1829 802.7566 197.3888
0.09 212.1375 3.7962 0.6951 36.2057 903.1012 222.3436
0.10 235.7083 4.2180 0.7723 40.2286 1003.4458 247.0485

Mean value (11340) (48850) (215500) (1107000) (3944000) (15760000)

Table 2. Covariance matrix of eigenvalues for P/P; = 0.25 and input variance = 0.01
[ 235708  —48.1849 9.6245 12205 —2.8253 123817
0.4218 —19.1673 —2.1016 5.7389 24.4282
0.0772 0.4812 —1.2195 —2.9141

Symmetric 4.0029 —0.1422 —0.4426
100.3446 0.8862
24,7048

2.672 x 10" mm* and the tip axial load P = 0.25P; (the tip axial load is taken to be 0.25
times the flutter load P, of the Beck’s column in this example).

The stochastic process a(x) representing the fluctuating components of elastic modutus
is represented by an exponential type correlation function relationship. This is the first-
order autoregressive or Markov process representation. Here, the correlation function is
given by

p(&) =e 1V where ¢ = constant,and ¢ = separation distance.

Further, the variance function is given by

y(U) =2 (5) (g —l4e L)

For U — oo, or for large finite element sizes, the above function can be approximated by
p(U) = 2¢/U.
So, the covariance between stiffness elements and mass elements is zero and that
between stiffness elements and geometric stiffness elements, as one knows, is also zero.
The NAG routines are used for solving the eigensystems. The variance of the funda-
mental eigenvalue as well as the covariance between the eigenvalues for different values of
input variance are listed in Tables 1 and 2.

9. CONCLUSIONS

A new version of stochastic finite element method is developed herein to solve the more
general non-self-adjoint eigenvalue problems. The method developed has been dem-
onstrated through solving the free-vibration problem of Beck’s and Leipholz columns
which have uncertain material property variations. Uncertain material property values like
Young’s modulus and mass density are modeled using stochastic fields and not by using
random variables. An efficient version of the stochastic finite element method has been
developed by the present authors for self-adjoint systems (Ramu and Ganesan, 1991,
1992a,b) and singularity problems (Sankar et al., 1992b). Also its efficiency has been clearly
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expained in detail in those works. Further, it has already been extended to gyroscopic non-
self-adjoint systems through a Hamiltonian formulation (Sankar et al., 1992a). For non-
self-adjoint systems arising in the case of non-conservatively loaded structures, it is well
known that 4 unique scalar work function is not available so that such a Hamiltonian
formulation can be used. So, the method developed for gyroscopic systems by the present
authors (Sankar er al., 1992a) has been modified herein by integrating it with a virtual
work formulation and sensitivity gradients for non-self-adjoint systems. The external term
in the conventional form of Hamilton’s principle is interpreted to be the virtual work done
by the non-conservative forces. Combining this strategy with an asymptotic expansion
employing eigensolution gradients based on adjoint system concepts, the free vibration
problem of non-conservatively loaded stochastic columns is solved for response moments.
Further, the features of the method developed for self-adjoint systems have been preserved.
As a result, the advantages and superiority of the method developed by the present authors
for self-adjoint systems become applicable to the present formulation also. Among them,
the major ones like the rigorous representation of material property variation by stochastic
fields and the capability of making the discretization process independent of system uncer-
tainties, are worthy of special mention here. Thus, the response moment calculations are
made in a more straightforward manner without converting the stochastic fields into a set
of random variables. At this point, it may be noted that estimation of reliability of the
system would call for a totally different type of analysis (Benaroya and Rehak, 1988) though
more complex, since the uncertainties both of the system parameters and the loads have to
be accounted for.

In the numerical example, the first-order autoregressive model (most commonly known
as the Markov model) has been employed which is the most commonly observed correlation
model for the field data of material property variation, loading uncertainty, etc. The present
work addresses the free vibration problem of non-conservatively loaded stochastic columns.
According to the dynamic stability theory, the free vibration problem is to be solved first
to obtain the critical loads of non-conservative columns. The frequency equation relates
the free vibration frequencies with the critical loads. Once the statistics of natural frequencies
are known, corresponding to the critical loads of the averaged column, they can be trans-
formed to yield the statistics of critical loads through the nonlinear frequency equation.
Such a procedure has already been developed and illustrated using extensive numerical
examples by the present authors (Ramu and Ganesan, 1992c) and so is not repeated here.
However, statistics of critical loads can also be obtained using the finite element matrices
that are developed in the present work.
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